Index of Figures and Tables

Table 1.	Data types in the CHRPD. Based on StreamNet database structure	
	(www.streamnet.org) with California-specific changes	4
Figure 1.	CHRPD general structure	7
Figure 2.	Amounts spent on restoration projects by watershed	10
Table 2.	Total amounts spent on restoration projects by year	
	(corrected for inflation to 1999 dollars)	11
Table 3.	Average rates charged for budget items in Siskiyou County	
	(corrected for inflation to 1999 dollars)	12
Table 1.	Average annual rates of return for various financial instruments (1947-1996)	23
Table 2.	Summary of ESA steps and economic contribution to decisions	
Figure 1.	Pyramid of information	29
Figure 1.	Cumulative effect	34
Figure 2.	Competing projects — large budget case	35
Figure 3.	Competing projects — small budget case	35
Figure 4.	Discrete uncertain outcomes — small budget case	
Figure 5.	E(A+B) - kV(A+B) — small budget case	36
Figure 6.	A decision tree	
Figure 7.	Maximin strategy — small budget	38
Table 1.	Non-USACE restoration cost studies	
Table 2.	Comparable construction costs	43
Table 3.	Primary factors affecting restoration costs	43
Table 1.	Example project costs and unit costs for six road decommissions	
Figure 1.	Fish can't get through here?	
Figure 2.	Angle iron fish ladder	
Table 1.	Angle iron fish ladder average costs	59
Table 2.	Chimney block fish ladder average costs	
Figure 3.	Correctly installed chimney block fish ladder	
Table 3.	Welding baffles into culvert — average costs	
Figure 4.	Baffles welded into a culvert.	
Figure 5.	Backing water into the culvert by use of drop structures	61
Table 4.	Backing water into culvert — average costs	61
Table 5.	Average cost of annual maintenance	62
Table 6.	Longevity of structures	63
Table 7.	Putting it all together (initial cost + maintenance + longevity)	63
Table 8.	Average costs of bridge design	64
Table 9.	Total costs and longevity of four different bridge types	65
Figure 6.	Example of a wood stringer bridge	65
Figure 7.	Example of a pre-fabricated concrete bridge	
Figure 8.	Example of a railroad bridge	66
Figure 9.	Example of a steel bridge	66
Table 10.	Cost and longevity comparison for three additional options	
Figure 10.	Example of a bottomless arch	
Figure 11.	-	
Figure 12.		
Table 11.	Comparison of options (initial cost + maintenance + longevity)	
	2	

Table 12.	What to consider and know when evaluating a stream crossing	
	for fish passage problems	9
Figure 1.	A diverted watercourse (Ackerman Creek, CA)	2
Figure 2.	Three culverts which are scheduled to be replaced with a railroad flatcar bridge in 2001	
	(Ackerman Creek, CA)	2
Figure 3.	A culvert and downspout installed on top of an old Humboldt crossing	
	(Little North Fork Navarro River, CA)	2
Figure 4.	Degree of crossing removal may involve assessment of more than just fisheries issues 7	3
Figure 5.	Tractor crushed logging debris at road or skid trail crossings	3
Figure 6.	Incorporating large woody debris	3
Figure 7.	Incorporating large woody debris	4
Figure 8.	A rolling dip draining surface runoff onto a fillslope covered with strawmulch	
	(Soda Springs Road, Albion River Watershed, CA)	4
Figure 9.	Example of a rock-armored crossing	5
Figure 10.	Frame bridge	5
Figure 11.	e e e e e e e e e e e e e e e e e e e	
Figure 12.	Example of a railroad flatcar bridge installed with riprap along the channel	6
Figure 13.	Example of bridge installation bulkheading	7
Table 1.	Sources and magnitude of road-related sediment delivery	
	in selected Northern California watersheds	2
Table 2.	Summary road erosion inventory and sediment yield data for selected,	
	inventoried watersheds in Oregon and Northern California 8	
Table 3.	Road sediment source inventory and assessment methods (PWA, 2000) 8	6
Figure 1.	Five-step process for storm-proofing forest roads	8
Figure 2.	Controls on costs	0
Figure 3.	Developing cost estimates from Level 3 field inventory data	5
Table 4.	Sample techniques and costs for decommissioning and upgrading rural roads 9	
Table 5.	Cost worksheet for high and high/moderate sites	8
Table 6.	Analysis of data from five road decommissioning proposals,	
	Northern California watersheds (1998 and 2000)9	
Table 7.	Typical road upgrading and road decommissioning costs	0
Figure 1.	Wind River watershed, Skamania County, Washington10	5
Figure 2.	1944 U.S. Department of War aerial photograph of the Upper Wind River	
	(river mile 20–25), Skamania County, Washington	5
Figure 3.	The Mining Reach riparian and stream channel restoration project,	
	Skamania County, Washington	
Figure 4.	Trout Creek restoration, Wind River watershed, Skamania County, Washington 10	8
Table 1.	Typical restoration costs	
Table 2.	Project budgets: Trout Creek, Panther Creek and Mine Reach	
Table 1.	Summary data regarding cover structure projects (n = 37)	
Table 2.	Multiple regression results	
Table 3.	Summary data regarding streamside vegetation projects (n = 11)	
Table 4.	Summary data regarding erosion control projects (n = 12)	
	X 1. Example Project	
Table A1.	Estimated budget: South Fork Garcia River instream structure component	4
Figure A1.	South Fork Garcia River proposed instream work survey # TU 981	
D: -	(surveyed October 1998)	5
Figure 1.	Streambed rehabilitation project under construction. Project design team ecologist	,
	checking invert of instream boulder wedge. (Case study project 4)	4

Index of Figures and Tables

Table 1	1. Typical tasks associated with project design, construction and follow-through	153
Figure	2. Excavation of defined floodplain for O'Grady creek (Case study project 5)	155
Figure	3. Crane overcomes tight construction access for delivery truck (Case study project 4)	155
Figure	4. Silt fence along the Sammamish River	156
Figure	5. Silt curtain in the Sammamish River	156
Figure	6. Bank stabilization work on Bear Creek to improve salmon habitat. The star on the	
	watershed map indicates the approximate project location	159
Table 2	2. Conrad Olson Farm project costs	159
Table 3	3. Bear Creek at Conover bank stabilization and LWD project costs	161
Figure	7. The two photos to the left show the streambed work in progress. The photo on the	
	right was taken about one week after construction	162
Table 4	4. Rutherford Creek stream rehabilitation project costs	163
Figure	8. Culvert replacement for fish passage at O'Grady Creek	
	(Photos taken immediately before and after construction)	164
Figure	9. Looking downstream from the new culvert at the rebuilt reach of O'Grady Creek	
	after construction. The streambed here is about three feet higher than the eroded	
	streambed. Buried boulder wedges create a stepped reach of pools for fish passage.	
	LWD was added for habitat diversity	165
Table 5	5. O'Grady Creek culvert replacement project costs	166
Figure	10. Problems associated with the alluvial fan reach on O'Grady Creek	167
Figure	11. Earthwork to create new stream alignment with floodplain bench, May 2000.	
	Wetland area is to the left side of the photo, and the side channel of the Green River	
	is behind the trees in the background	167
Figure	12. Volunteer planting event for O'Grady Creek stream enhancement project,	
	November 2000. The new stream channel is visible as it meanders toward the	
	sidechannel of the Green River. It was not connected to flowing water until May 2002	168
Table 6	6. O'Grady Creek wetland and stream habitat enhancements project costs	169
Figure	1. Total screen and project costs (primarily California projects)	173
Figure	2. Recent large facility screen costs in California	174
Figure	3. Hydraulic and biological relationships near screens (lab research)	175
Figure	4. CCWD Los Vaqueros pumping plant intake sampling net (field research)	176
Figure	5. Universal stream bottom retrievable fish screen	177
Figure	6. Operational flexibility (adjustable overflow gates allow proper ladder hydraulics	
	with 3-foot pool fluctuation)	
Figure		
Figure	·	
	* •	170
Figure	10 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Figure	10. Improperly cleaned and maintained screen.	179
Figure Figure	11. Debris-clogged screen	179 180
Figure Figure Figure	11. Debris-clogged screen	179 180 180
Figure Figure Figure Figure	11. Debris-clogged screen 12. Water backwash cleaning system with clogged spray nozzle. 13. Andreotti fish screen 9/96 (collapsed screen).	179 180 180 180
Figure Figure Figure Figure	11. Debris-clogged screen 12. Water backwash cleaning system with clogged spray nozzle. 13. Andreotti fish screen 9/96 (collapsed screen). 14. Butte Creek Farms screen 4/12/99 (screen failure).	179 180 180 180 180
Figure Figure Figure Figure Figure	11. Debris-clogged screen 12. Water backwash cleaning system with clogged spray nozzle. 13. Andreotti fish screen 9/96 (collapsed screen). 14. Butte Creek Farms screen 4/12/99 (screen failure). 15. Corroded screen — dissimilar metals and poor water quality (outside view).	179 180 180 180 180
Figure Figure Figure Figure Figure Figure	11. Debris-clogged screen 12. Water backwash cleaning system with clogged spray nozzle. 13. Andreotti fish screen 9/96 (collapsed screen). 14. Butte Creek Farms screen 4/12/99 (screen failure). 15. Corroded screen — dissimilar metals and poor water quality (outside view). 16. Corroded screen (inside view).	179 180 180 180 180 181 181
Figure Figure Figure Figure Figure Figure Figure	11. Debris-clogged screen 12. Water backwash cleaning system with clogged spray nozzle. 13. Andreotti fish screen 9/96 (collapsed screen). 14. Butte Creek Farms screen 4/12/99 (screen failure). 15. Corroded screen — dissimilar metals and poor water quality (outside view). 16. Corroded screen (inside view). 17. Grit damage to the screen cleaning system.	179 180 180 180 180 181 181
Figure Figure Figure Figure Figure Figure Figure Figure	11. Debris-clogged screen 12. Water backwash cleaning system with clogged spray nozzle. 13. Andreotti fish screen 9/96 (collapsed screen). 14. Butte Creek Farms screen 4/12/99 (screen failure). 15. Corroded screen — dissimilar metals and poor water quality (outside view). 16. Corroded screen (inside view).	179 180 180 180 181 181 181 182

Table 1.	Fogarty Fish Screen 8-1-96 (revised 8-8-97 & 3-18-98)	188
Figure 1.	Washington State fish screen costs, 1 to 15 CFS	191
Figure 2.	Washington State fish screen costs, 1 to 15 CFS (± 25%)	
Figure 3.	Washington State fish screen costs, 1 to 58 CFS (± 25%)	
Figure 4.	Washington State fish screen costs, 1 to 210 CFS (± 25%)	
Figure 5.	Washington State fish screen costs, initial estimates	
Figure 9.	Fish screen cost estimates confidence level	
Table 1.	Agencies involved in the technical team initially developed for	
14510 1.	lower Clear Creek restoration	198
Table 2.	Three optional solutions for solving fish passage problems at Saeltzer Dam	100
Table 2.	on lower Clear Creek selected for detailed studies	108
Table 3.	Comparison of three optional solutions to the fish passage problem at Saeltzer Dam	130
Table 5.	located on lower Clear Creek	100
Table 4		199
Table 4.	The schedule for implementing the Saeltzer Dam Fish Passage and Flow Preservation	ഹെ
m 11 -	Project on Clear Creek during the year 2000	203
Table 5.	Basic elements of the Saeltzer Dam Fish Passage and Flow Preservation Project	20.4
T	on lower Clear Creek	204
Figure 1.	Fish kill in unscreened part of diversion (fish in ditch between diversion point	
	and screen, eastern Washington)	
Table 1.	ODFW Fish Screening Program, average fish screen costs	207
Figure 2.	Paddle box screen (screen at ditch diversion point in Jack Creek, eastern Oregon;	
	stream powers paddle; brush on one paddle cleans screen; 1 cfs)	207
Figure 3.	Rotary drum screen (self-cleaning single drum screen; paddle powered; one-bay;	
	John Day River Basin, eastern Oregon)	208
Figure 4.	Rotary drum screen (self-cleaning drum screen; paddle powered; four-bay;	
	Rogue River Basin, southwestern Oregon; 29 cfs)	208
Figure 5.	Rotary drum screen (self-cleaning drum screen; electric powered; eastern Washington)	209
Figure 6.	Rotary drum screen (large drum screen, 19' in diameter; Red Bluff, California)	209
Figure 7.	Traveling belt screen(eastern Washington)	209
Figure 8.	Traveling belt screen (plastic; 10 cfs solar powered screen; eastern Oregon)	209
Figure 9.	Self-cleaning panel screen (160 cfs wiper brush self-cleaning screen; electric powered;	
	Parrot-Phelan Diversion in northern California)	210
Figure 10.	Low velocity pump screen (Pump-Rite manually-cleaned pump screen; water velocity	
<u> </u>	balance tube inside)	210
Figure 11.	Clemons pump screen (self-cleaning pump screen	211
	Sure-Flo pump screen (self-cleaning pump screen; water velocity balance tube inside)	
	Fish screen bypass (bypass safely returns screened fish to stream; bypass can be	
O	very long, even hundreds of feet; eastern Oregon)	211
Figure 14.	Screen bypass trap box (fish saved by screen are sorted by species and counted;	
6	steelhead smolts in box in photo; John Day River Basin, eastern Oregon)	212
Table 1.	USACE programs for restoration: General Investigations Program	
Table 2.	Corp programs for restoration: Continuing Authorities Program	
Figure 1.	Joint Venture Management Board	
Table 1.	Habitat goals for the San Francisco Bay Joint Venture	
Table 1.	San Francisco Bay Joint Venture wetland habitat costs (in millions) by subregion	
Table 3.	Average cost rates for the SF Bay Joint Venture Implementation Strategy	
Table 5.		434
rabie 1.	Restoration project data requirements for cost analysis, as suggested by	251
	workshop participants	Z01